139. The Photochemical Behaviour of 55-Dimethyl-2 (SH)-furanone

by **Elke Anklaml)** and **Paul Margaretha**

Institut **fur** Organische Chemie und Biochemie, Universitat Hamburg, D-2000 Hamburg 13

(5.V.83)

Summary

The photochemical behaviour of the title compound **2c** was investigated in various solvents. In benzene and t-butanol photodimerization affords the *cis-anti-cis* HH - and HT -dimers (H= head, T= tail). In acetonitrile, cyclohexane and 2-propanol, photoreduction competes with photodimerization. The photoreduction products are hydrodimers, solvent adducts and the saturated lactone (the 2 Hreduction product). In acetonitrile and cyclohexane H-abstraction by the β -C-atom of the C=C bond is the predominant reduction process. In 2-propanol, solvent adducts to the a - and β -C-atoms are formed in equal amounts. In xanthone-sensitized irradiations the ratio of HH - to HT -dimer is the same as on direct irradiation and the relative rates of conversion of **2c** to products in different solvents are also similar under both conditions.

Irradiation of five-membered cyclic a, β -unsaturated carbonyl compounds, *e.g.* 2-cyclopentenones $[1]$ $[2]$, $2(5H)$ -furanones $[3]$ $[4]$ and $3(2H)$ -furanones $[5]$ $[6]$, in various solvents usually leads to the formation of tricyclic dimers containing a cyclobutane ring. In addition, H-abstraction from the solvent, either by the carbonyl O-atom or by the β -C-atom of the C=C bond affords solvent adducts, the saturated carbonyl compound and hydrodimers, all these reduction products stemming from the corresponding radical intermediates *(Scheme 1).*

For 2-cyclopentenones (1) the introduction of alkyl groups on $C(3)$ or $C(4)$ apparently has a pronounced influence on the reaction path, *i.e.* photodimerization *vs.* photoreduction2). Thus, irradiation of 2-cyclopentenone **(la)** in toluene affords the *cis-anti-cis HH-* and *HT-*dimers³) exclusively, but 3-t-butyl-2-cyclopentenone **(Ib)** gives only reduction products [2]. When irradiated neat 4,4-dimethyl-2-cyclopentenone **(lc)** affords dimers analogous to those of **la** but already in t-BuOH, a rather poor hydrogen-donating solvent, the ratio of reduction products to dimers is $1:2$ [9].

In this connection little is known about 2 (5 H)-furanones **2.** According to *Ohga* & *Matsuo* [3] [4] irradiation of **2a** in acetonitrile affords the *cis-anti-cis* HH- and

¹) Part of the planned doctoral thesis, University of Hamburg.

^{2,} For a general discussion **of** the photoreduction of carbonyl compounds, *CJ [7].*

^{3,} *NH:* head-to-head; *HT:* head-to-tail.

HT-dimers **3** and **4** in 20-30% overall yield, but no photoreduction products have been detected in these experiments. In 2-propanol **2a** and **2b** give the solvent adduct 5 at $C(\beta)$ -atom exclusively [10], and in cyclohexane a 1:1 mixture of the solvent adducts at α -C- and β -C-atoms is obtained from 2a [11] [12]. No other reduction products have been observed *(Scheme* 2).

To clarify the aspect of photodimerization *vs.* photoreduction for this class of compounds, we investigated the photochemical behaviour of 5,5-dimethyl-2(5 H)furanone (2c) in different solvents. Irradiation $(\lambda = 254 \text{ nm})$ of 2c $(10^{-2} - 10^{-1} \text{ m})$ in acetonitrile afforded a mixture of six products, the *cis-anti-cis* HH- and HTdimers **3c** and **4c,** the diastereoisomeric hydrodimers **8c** and **9c,** the saturated lactone **1Oc** and the solvent adduct **llc.** Only the two dimers were formed whea

Scheme I

Scheme 2

a 1M solution of 2c was irradiated *(Scheme 3)*. The product distribution as a function of the concentration of **2c** is given in *Table 1.*

Irradiation of $2 \cdot 10^{-2}$ m solutions of 2c in benzene and t-BuOH afforded the two photodimers exclusively. In cyclohexane the solvent adducts **6c** and **7c** were formed along with the dimers **3c** and **4c,** the hydrodimers **8c** and **9c** and the saturated lactone 10c. In addition about 10% trans-3, 4-dicyclohexyl-5, 5-dimethyl-3,4-dihydro-2 (5 H)-furanone **(12c)** was isolated, but this product most probably arose from a dark reaction of **2c** with cyclohexyl radicals. In 2-propanol the only products were the solvent adducts **13c** and **5c** and the saturated lactone **1Oc** *(Scheme 4).* The product distribution and the relative reactivity of **2c** in these different solvents are summarized in *Table* 2.

Scheme 4

1468

Solvent	Dimers		Reduction products					$R_{a}H/10 + R_{B}H$		Relative	
		$3c \quad 4c$		$8c \t 9c$		10c R _a H^a)	$R_{\beta}H^{b}$	2c	2a	degree of conversion	
CH ₃ CN	16	16	15	-15	12	25(11c)		2.1	1.1°	8	
C_6H_6	23	77									
(CH_3) ₂ COH	26	74							н.	12	
(CH ₃) ₂ CHOH					35	35(13c)	30(5c)	0.5	$0.0d$)	24	
$C_6H_{12}^{\ e}$	2	5	9	9	16	35(6c)	5(7c)	1.7	1.0^{f}	17	

Table 2. *Product distribution for irradiation* ($\lambda = 254$ nm) *of* **2c** ($2 \cdot 10^{-2}$ M) *in different solvents and relative reactivities*

The spectroscopic data for photoproducts **3c-13c** are summarized in *Table 3.* In the 'H-NMR spectra of dimers **3c** and **4c** and of hydrodimers **8c** and **9c** the *AA'XX'* and *AA'BB'XX'* systems, respectively, could be analyzed and the calculated coupling constants were successfully used to simulate these spectra. **As** neither **8c** nor **9c** could be resolved into enantiomers by GC on a chiral stationary phase, the assignment of **D,L-** or meso-configuration to **8c** and **9c** is tentative. The different coupling constants between the α -carbonyl protons of the two rings $(J(XX') = 8.4$ Hz for **8c** and 5.4 Hz for **9c**) also did not allow a clear decision. An easy way of differentiating between the solvent adducts at a -C- and β -C-atoms was based on the fact, that the geminal coupling constant for a $CH₂-group$ in a five-membered ring a to a carbonyl group is larger than for a CH₂-group at β -position (16 *vs.* 12 Hz) [13].

Irradiation ($\lambda \ge 300$ nm) of **2c** (0.02_M) in the presence of xanthone (0.002_M) as sensitizer afforded the HH - and HT -dimers in the same ratio as above. The relative rates of conversion of **2c** in different solvents were also similar to those oa direct irradiation *(Table* 4).

Irradiation of **2a** (10^{-2} **M** in CH₃CN, $\lambda = 254$ nm) afforded two solvent adducts **lla** and **14a** and the saturated lactone **10a** in addition to the dimers **3a** and **4a** (Scheme **5).** The original experiments leading to the exclusive detection of dimers **3a** and **4a** had been performed in more concentrated (0.2-0.6~) solutions [3]. In *Table 5* are summarized the relative reactivities for **2c** and **2a** on direct irradiation in acetonitrile and t-BuOH, and for **2c, 2a,** cyclopentenones **la** and **lc** and 2,2 dimethyl-3(2 H)-furanone **15** in t-BuOH in the presence of xanthone as sensitizer.

From *Tables I* and *2* it can be seen that the ratio of *HH/HT* dimers **3c/4c** varies with the polarity of the solvent, the HH-dimer **3c** being preferentially formed in the more polar solvent $CH₃CN$. This aspect has been observed and discussed for several cyclic α , β -unsaturated carbonyl compounds [1] [4] [6]. As expected, the ratio of dimers to reduction products increases with increasing concentration of **2c.**

Hydrodimers **8c** and **9c** are products either from dimerization of the radical formed by β -H-abstraction (16c) or from specific addition of 16c to the α -C-atom of ground state 2c, the highest yield being obtained in CH₃CN and no such products being detected in 2-propanol. The unsubstituted lactone **2a** did not give hydrodimers when irradiated in dilute $CH₃CN$ -solution. A similar hydrodimer formation has only been observed in toluene for cyclopentenones **1** bearing a bulky substituent $(R^1 = CH (CH_3)_2, C(CH_3)_3)$ on C(3)-atom [2]. Although it is difficult to propose a rationale for these findings, it becomes obvious that for preparative purposes photochemical hydrodimerization is complementary to electrohydrodimerization, as in the latter reaction dicarbonyl compounds coupled *via* the β -C-atoms are formed exclusively [15].

Table 3. Spectroscopic data for photoproducts of **2c**

^a) In CCl₄. ^b) In KBr. ^c) Cf. [14].

	CH ₂ CN	C∡H∡		$(CH_3)_3COH$ $(CH_3)_2CHOH$ C_6H_{12}	
3c/4c	50:50	25:75	25:75		33:66
Relative degree of conversion			10	120	68

Table *5. Relative reactivity* (photodimerization) *for five-membered cyclic enones*

The result that **2c** gave a much higher proportion of the solvent adduct at a-C-atom and also more saturated lactone **10** than **2a** on direct irradiation is easier to explain. If the only key steps for the formation of these products would be H-abstraction by either the β -C-atom (formation of 16) or by the carbonyl O-atom (formation of **17),** one should rather except the opposite, as the approach of the H-donor to β -C-atom in 2c is more hindered by the adjacent CH₃-groups. This leads to the assumption that **2c** and **2a** undergo both types of H-abstraction in equal proportion and that **17** undergoes a free-radical chain reaction with **2** and the solvent to afford solvent adduct at β -C-atom (such a chain mechanism has been proposed to explain the quantum yields exceeding unity for the addition of 2-propanol to **2a** or **2b** giving exclusively the solvent adduct *5* [lo]), and therefore the necessary conclusion that this propagation step occurs less efficiently (or not at all) for **17c.** The direct coupling of **17** with a radical R. is less favourable for **17c** than for 17a owing to the steric hindrance by the CH₃-groups and therefore more **2** H-reduction product **1Oc** is formed from **2c** than **10a** from **2a** *(Scheme* 6).

The results of the xanthone sensitized experiments with **2c** summarized in *Table 4* can be interpreted as follows. **As** the ratios of *HH-* to HT-dimer in the different solvents in the sensitizing experiments are the same as on direct irradiation, it can be assumed that these products are formed *via* the same triplet (T_1) state. For **2b** this triplet reaction has been further supported by quenching experiments with 1,3-pentadiene [4]. In cyclohexane and 2-propanol the xanthone-sensitized reaction proceeds much faster (relative to benzene) than on direct irradiation. This

is probably due to an enhanced formation of intermediate **17c** *via* H-transfer to the carbonyl 0-atom of **2c** by the radical formed from excited xanthone through H-abstraction from the solvent, thus accelerating the free-radical chain reaction described in *Scheme 6.*

Photodimerization of cyclic enones is known to be a multistep process $[1] [6] [16]$. Whereas a comparison of reactivities of excited enones toward one alkene (or of one enone towards different alkenes) under constant experimental conditions (solvent, concentration, temperature) using an appropriate kinetic scheme [171 [181 is feasible, an extension to photodimerization reactions, *e.g.* comparing **2b** and **la** [4], is problematic, as reactivities of various excited molecules toward *different* ground state partners are now compared. Comparing sensitized photodimerizations is obviously even more delicate, as the efficiencies for energy transfer from *e.g.* triplet xanthone to the different enones are not necessarily alike. The data in *Table 5* merely emphasize the complexity of enone photodimerization, as illustrated by either the fact that on direct irradiation the relative reactivities of lactones **2a** and **2c** invert in changing the solvent from acetonitrile to t-BuOH, or by the result that in the sensitized irradiation the 4,4-dimethyl compound **lc** is converted to dimers more slowly than **la,** as expected on steric arguments, but that lactones **2c** and **2a** show the opposite behaviour.

Financial support by the *Deutsche Forschungsgemeinschaft* and the *Fonds der Chemischen Industrie* is gratefully acknowledged. We thank Dr. *V. Sinnweli for* the NMR-simulation experiments and Mrs. A. Meiners for GC/MS analyses.

Experimental Part

General. Absorptions in the IR spectra are given in cm^{-1} . Chemical shifts in the ¹H-(400 MHz)-NMR spectra are given in ppm relative to TMS $(=0$ ppm) as internal standard. The GC/MS analyses were carried out on a *Varian MATCH7* instrument at 70 eV using a 2-m column of **3%** *SE30 on 80/100 Suppelroport.*

Starting materials. Furanones **2a** [19] and **2c** [20], cyclopentenone **Ic** 1171 and 3(2H)-furanone **15** [21] were synthesized according to the references indicated. Cyclopentenone **la** was purchased from *Aldrich.* All solvents used for photolyses were of spectral grade.

Photolyses. a) Direct irradiations: Ar-degassed solutions of **2c** were irradiated in quartz tubes, either in a *Rayonet RPR-100* photoreactor or in a merry-go-round apparatus *(Applied Photophysics),* with light of $\lambda = 254$ nm. b) Sensitized irradiations: Ar-degassed solutions were irradiated in *Pyrex* tubes in the photoreactors mentioned above with light of $\lambda \geq 300$ nm.

Direct ($\lambda = 254$ nm) irradiation of 2c. – a) *I*M in acetonitrile. A solution of 224 mg 2c in 2 ml was irradiated for 12 h. After evaporation of the solvent the solid residue **(3c** and **4c,** 1 : 1) was dissolved in 1 ml acetone. Slow addition of 1 ml pentane precipitated **4c.** The white crystals were filtered, washed with pentane yielding 90 mg (40%) *cis-anti-cis-5*, 5, 10, 10-tetramethyl-4, 9-dioxatricyclo^{[5.3.0.02-6]decane-} 3,8-dione **(4c,** m.p. 248-250"). The filtrate was evaporated and the residue recrystallized 4 times from pentane to afford pure cis-anti-cis-5, 5, 8, 8-tetramethyl-4, 9-dioxatricyclo [5.3.0.0^{2,6}] decane-3, 10-dione **(3c,** m.p. 152-155").

b) $2 \cdot 10^{-2}$ **M** *in acetonitrile.* A solution of 67.2 mg **2c** in 30 ml was irradiated for 3 h. After evaporation of the solvent, **4c** was precipitated by addition of 2 ml acetone/pentane 1:l and **3c** by adding additional 2 ml pentane. Chromatography of the filtrate on $SiO₂$ (Et₂O/pentane 2:1) afforded **IOC** *(cf.* d)) and *3-cyanomethyl-5,5-dimethyl-3,4-dihydro-2(5H)\$uranone* **(llc,** *Rf* **0.3,** oil). Elution with EtzOIpentane 9: I afforded *racemic 3-[2-oxo-S, 5-dimethyl-3, Q-dihydro-(5'H)-3-furyIJ-5,5-dimethyl-3,4 dihydro-2(5H)-furanone* (8c, R_f 0.8, m.p. 164-165°) and the *meso* hydrodimer **9c** (R_f 0.4, slightly contaminated with dimer **4c).**

c) $2 \cdot 10^{-2}$ M in benzene or t-BuOH. A mixture of 3c and 4c was obtained (1:3 by ¹H-NMR).

d) $2 \cdot 10^{-2}$ M in 2-propanol. Irradiation of 67.2 mg in 30 ml for 3 h afforded a mixture of **10c**, 13c and 5c (35:35:30 by ¹H-NMR). Chromatography on SiO₂ (CH₂Cl₂/AcOEt 2:1) afforded 5,5-dimethyl-*3.4-dihydro-2 (5H)-furanone* **(IOc,** *Rf 0.8,* oil), *3-(2-hydroxy-2-methyI)ethyl-5,5-dimethyl-3, 4-dihydro-* $2(5H)$ -furanone (13c, R_f 0.7, m.p. 72-74°), and the 4-substituted compound 5c (R_f 0.5, oil).

e) $2 \cdot 10^{-2}$ M in cyclohexane. Irradiation of 67.2 mg in 30 ml for 3 h, evaporation of the solvent, addition of 3 ml pentane, filtration of the precipitate (dimers **3c** and **4c** and hydrodimers **8c** and **9c)** and chromatography on SiO₂ (hexane/AcOEt 2:1) afforded trans-3, 4-dicyclohexyl-5, 5-dimethyl-3, 4*dihydro-2(5H)-furanone* (12c, R_f 0.8, oil), traces of the *cis-compound* $(R_f$ 0.7, oil. - **IR:** 1775. - MS: ²⁶³*(M+* - CH3), *113), 3-cyclohexyl-5,5-dimethyl-3, 4-dihydro-2(5H)\$urunone* **(6c,** *Rr* 0.6, m.p. 69-71 "), the 4-cyclohexyl compound $7c$ (R_f 0.5, oil) and 10c ($cf.$ d)).

Direct ($\lambda = 254$ *nm) irradiation of* **2a** (10^{-2} M) *in acetonitrile.* GC/MS analysis indicated the formation of *3,4-dihydro-2(5H)rfuranone* **10a** *(5%, M+* = 86), of *3-* and *4-cyanomethyl-3, 4-dihydro-2(SHJIfuranone* **lla** (10%, $M^+ = 125$) and **14a** (10%, $M^+ = 125$) in addition to the known dimers **3a** and **4a** (70%).

Sensitized irradiation ($\lambda \ge 300$ *nm)* of **2c**. After irradiation of **2c** ($10^{-2}M$) and xanthone ($10^{-3}M$) in the different solvents, the ratios of dimers **3c/4c** were determined by *IH-NMR.* The relative rates of conversion of starting material were monitored by GC using undecane as internal standard.

Comparative irradiations. Solutions of **2a** and **2c** $(10^{-1}M)$ in acetonitrile or $2 \cdot 10^{-2}M$ in *t*-BuOH) or solutions of **1a, 1c, 2a, 2c** and **15** $(10^{-2}M)$ and xanthone $(3 \cdot 10^{-2}M)$ were irradiated in the merry-go-round apparatus and the degree of conversion measured by GC.

REFERENCES

- [I] *P. de Mayo,* Acc. Chem. Res. **4,41** (1971).
- [2] *R. Reinfried,* D. *BelluS* & *K. Schaffner,* Helv. Chim. Acta *54,* 1517 (1971).
- [3] *K. Ohga* & *T. Malsuo,* Bull. Chem. SOC. Jpn. *43,3505* (1970).
- **[4]** *K. Ohga* & *T. Matsuo,* Bull. Chem. SOC. Jpn. *49,* 1590 (1976).
- [5] *P. Margaretha,* Tetrahedron *29,* 1317 (1973).
- [6] *P. Margarelha,* Chimia *29,* 203 (1975).
- [7] P. Margaretha, in «Houben-Weyl, Methoden der Organischen Chemie», Vol. 6/Ib, in press.
- *[8] A.J. Bellamy,* J. Chem. SOC. B, *1969,* 449.
- [S] *W. C. Agosta* & *A.B. Smith III,* J. Am. Chem. *SOC. 93,* 5513 (1971).
- [lo] *K. Ohga* & *T. Matsuo,* J. Org. Chem. *39,* 106 (1974).
- [11] *T. W. Flechtner, J. Org. Chem. 42, 901 (1977).*
- [121 *B. H. Toder. S. J. Branca* & *A. B. Smith III,* **ibid.** 42,904 (1977)
- [131 *J. T. CIerc* & *E. Prefsch,* ctKernresonanzspektroskopie)), Teil **1,** Akad. Verlagsgesellschaft, Frankfurt a.M. 1973.
- 1141 *H. Pyysalo, J. Enqvist, E. Honkanen &A. Pippuri,* Finn. Chem. Lett. 1975, 129.
- [I51 *P. Tissot. J. P. Surbeck, F. GulaGar* & *P. Margaretha,* Helv. Chim. Acta 64, 1570 (1981).
- [I61 *P.J. Wagner* & *D.J. Bucheck,* Can. J. Chem. 47,713 (1969).
- [I71 G. *Vo Thi* & *P. Margaretha,* Helv. Chim. Acta 59, 2236 (1976).
- [181 *R.* 0. *Louffy* & *P. de Mayo,* J. Am. Chem. SOC. *99,* 3559 (1977).
- [191 *M. Franck-Neumann* & *C. Berger,* Bull. Soc. Chim. Fr. 1968,4067,
- [20] *J.* C. *Grandguillot* & *F. Rouessac,* Synthesis 1979,607.
- [21] *P. Margaretha,* Tetrahedron Lett. *1971,* 4891.